QUICKGUIDE

NarkoVet II Small Animal Anesthesia Machine

Item no. 213130

Daily Maintenance

- ▶ Change CO₂ absorbent per CO₂ absorbent manufacturer's recommendations, clean CO₂ absorber canister with mild soap and water as needed and dry thoroughly
- ▶ Check the weight of gas filter canister regularly
- Change hoses and bags regularly
- ▶ Check O₂ flush button to ensure it is working properly
- Inspect pop off valve for malfunction
- Check inhalation/exhalation valves to confirm that they are sealing
- Clean machine surfaces with a soft doth, mild soap, and water

Weekly Maintenance

- Visually inspect the absorber gasket and inhalation/exhalation valve gaskets for wear. Clean with mild soap and water
- Visually inspect the flutter discs in the inhalation/ exhalation valves for damage or curling (replace if needed)

Choosing a Breathing Circuit

Animal Weight	Circuit
Less than 15 lbs / 7 kg	Non-rebreathing Circuit
Greater than 15 lbs / 7 kg	Rebreathing Circuit

Choosing a Bag Size

Maximum Patient Weight	Breathing Bag Size
4.5 kg	½ Liter
4.6~9 kg	1 Liter
9.1~27.2 kg	2 Liter
27.3~54.4 kg	3 Liter
> 54.4 kg	5 Liter

Recommended Oxygenflow

Non-rebreathing	Rebreathing
Maintenance	Maintenance
0.2 l /kg/minute	0.03 l /kg/minute

Note!

Higher flow rates are required for induction when using an anesthesia machine, or when transferring from injectable drugs to inhalation anesthetics. Flow may then be reduced to maintenance setting. A minimum oxygen, flow of 0.5 l/min is recommended for optimum vaporizer performance.

Determining Cost of Anesthetic Agent

- 1. Determine cc's used per hour
- 2. Determine cost of agent per cc (ml)
- 3. Multiply the two numbers
- 4. Gives cost of use per hour